\(\int \frac {x^4}{(a+b x^2)^2 \sqrt {c+d x^2}} \, dx\) [758]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 132 \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\frac {a x \sqrt {c+d x^2}}{2 b (b c-a d) \left (a+b x^2\right )}-\frac {\sqrt {a} (3 b c-2 a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^2 (b c-a d)^{3/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b^2 \sqrt {d}} \]

[Out]

-1/2*(-2*a*d+3*b*c)*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))*a^(1/2)/b^2/(-a*d+b*c)^(3/2)+arctanh(x*
d^(1/2)/(d*x^2+c)^(1/2))/b^2/d^(1/2)+1/2*a*x*(d*x^2+c)^(1/2)/b/(-a*d+b*c)/(b*x^2+a)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {481, 537, 223, 212, 385, 211} \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=-\frac {\sqrt {a} (3 b c-2 a d) \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^2 (b c-a d)^{3/2}}+\frac {a x \sqrt {c+d x^2}}{2 b \left (a+b x^2\right ) (b c-a d)}+\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b^2 \sqrt {d}} \]

[In]

Int[x^4/((a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

(a*x*Sqrt[c + d*x^2])/(2*b*(b*c - a*d)*(a + b*x^2)) - (Sqrt[a]*(3*b*c - 2*a*d)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqr
t[a]*Sqrt[c + d*x^2])])/(2*b^2*(b*c - a*d)^(3/2)) + ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]]/(b^2*Sqrt[d])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {a x \sqrt {c+d x^2}}{2 b (b c-a d) \left (a+b x^2\right )}-\frac {\int \frac {a c-2 (b c-a d) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b (b c-a d)} \\ & = \frac {a x \sqrt {c+d x^2}}{2 b (b c-a d) \left (a+b x^2\right )}+\frac {\int \frac {1}{\sqrt {c+d x^2}} \, dx}{b^2}-\frac {(a (3 b c-2 a d)) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{2 b^2 (b c-a d)} \\ & = \frac {a x \sqrt {c+d x^2}}{2 b (b c-a d) \left (a+b x^2\right )}+\frac {\text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b^2}-\frac {(a (3 b c-2 a d)) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{2 b^2 (b c-a d)} \\ & = \frac {a x \sqrt {c+d x^2}}{2 b (b c-a d) \left (a+b x^2\right )}-\frac {\sqrt {a} (3 b c-2 a d) \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{2 b^2 (b c-a d)^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b^2 \sqrt {d}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.70 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.12 \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\frac {\frac {a b x \sqrt {c+d x^2}}{(b c-a d) \left (a+b x^2\right )}+\frac {\sqrt {a} (3 b c-2 a d) \arctan \left (\frac {a \sqrt {d}+b x \left (\sqrt {d} x-\sqrt {c+d x^2}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{(b c-a d)^{3/2}}-\frac {2 \log \left (-\sqrt {d} x+\sqrt {c+d x^2}\right )}{\sqrt {d}}}{2 b^2} \]

[In]

Integrate[x^4/((a + b*x^2)^2*Sqrt[c + d*x^2]),x]

[Out]

((a*b*x*Sqrt[c + d*x^2])/((b*c - a*d)*(a + b*x^2)) + (Sqrt[a]*(3*b*c - 2*a*d)*ArcTan[(a*Sqrt[d] + b*x*(Sqrt[d]
*x - Sqrt[c + d*x^2]))/(Sqrt[a]*Sqrt[b*c - a*d])])/(b*c - a*d)^(3/2) - (2*Log[-(Sqrt[d]*x) + Sqrt[c + d*x^2]])
/Sqrt[d])/(2*b^2)

Maple [A] (verified)

Time = 3.02 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.87

method result size
pseudoelliptic \(-\frac {-\frac {2 \,\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right )}{\sqrt {d}}-\frac {a \left (-\frac {b \sqrt {d \,x^{2}+c}\, x}{b \,x^{2}+a}-\frac {\left (2 a d -3 b c \right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}\right )}{a d -b c}}{2 b^{2}}\) \(115\)
default \(\frac {\ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{b^{2} \sqrt {d}}-\frac {a \left (\frac {b \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x +\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{4 b^{3}}-\frac {a \left (\frac {b \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{\left (a d -b c \right ) \left (x -\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{4 b^{3}}+\frac {3 a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{4 b^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}-\frac {3 a \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{4 b^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}\) \(843\)

[In]

int(x^4/(b*x^2+a)^2/(d*x^2+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/b^2*(-2/d^(1/2)*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))-a/(a*d-b*c)*(-b*(d*x^2+c)^(1/2)*x/(b*x^2+a)-(2*a*d-3*b
*c)/((a*d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2))))

Fricas [A] (verification not implemented)

none

Time = 0.48 (sec) , antiderivative size = 1053, normalized size of antiderivative = 7.98 \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\left [\frac {4 \, \sqrt {d x^{2} + c} a b d x + 4 \, {\left (a b c - a^{2} d + {\left (b^{2} c - a b d\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + {\left (3 \, a b c d - 2 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 2 \, a b d^{2}\right )} x^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{8 \, {\left (a b^{3} c d - a^{2} b^{2} d^{2} + {\left (b^{4} c d - a b^{3} d^{2}\right )} x^{2}\right )}}, \frac {4 \, \sqrt {d x^{2} + c} a b d x - 8 \, {\left (a b c - a^{2} d + {\left (b^{2} c - a b d\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (3 \, a b c d - 2 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 2 \, a b d^{2}\right )} x^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{8 \, {\left (a b^{3} c d - a^{2} b^{2} d^{2} + {\left (b^{4} c d - a b^{3} d^{2}\right )} x^{2}\right )}}, \frac {2 \, \sqrt {d x^{2} + c} a b d x + {\left (3 \, a b c d - 2 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 2 \, a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) + 2 \, {\left (a b c - a^{2} d + {\left (b^{2} c - a b d\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{4 \, {\left (a b^{3} c d - a^{2} b^{2} d^{2} + {\left (b^{4} c d - a b^{3} d^{2}\right )} x^{2}\right )}}, \frac {2 \, \sqrt {d x^{2} + c} a b d x - 4 \, {\left (a b c - a^{2} d + {\left (b^{2} c - a b d\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (3 \, a b c d - 2 \, a^{2} d^{2} + {\left (3 \, b^{2} c d - 2 \, a b d^{2}\right )} x^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right )}{4 \, {\left (a b^{3} c d - a^{2} b^{2} d^{2} + {\left (b^{4} c d - a b^{3} d^{2}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x^4/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(4*sqrt(d*x^2 + c)*a*b*d*x + 4*(a*b*c - a^2*d + (b^2*c - a*b*d)*x^2)*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2
+ c)*sqrt(d)*x - c) + (3*a*b*c*d - 2*a^2*d^2 + (3*b^2*c*d - 2*a*b*d^2)*x^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2
 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)
*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(a*b^3*c*d -
 a^2*b^2*d^2 + (b^4*c*d - a*b^3*d^2)*x^2), 1/8*(4*sqrt(d*x^2 + c)*a*b*d*x - 8*(a*b*c - a^2*d + (b^2*c - a*b*d)
*x^2)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + (3*a*b*c*d - 2*a^2*d^2 + (3*b^2*c*d - 2*a*b*d^2)*x^2)*sqrt
(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^
2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2
*a*b*x^2 + a^2)))/(a*b^3*c*d - a^2*b^2*d^2 + (b^4*c*d - a*b^3*d^2)*x^2), 1/4*(2*sqrt(d*x^2 + c)*a*b*d*x + (3*a
*b*c*d - 2*a^2*d^2 + (3*b^2*c*d - 2*a*b*d^2)*x^2)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sq
rt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) + 2*(a*b*c - a^2*d + (b^2*c - a*b*d)*x^2)*sqrt(d)*log(-2*
d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/(a*b^3*c*d - a^2*b^2*d^2 + (b^4*c*d - a*b^3*d^2)*x^2), 1/4*(2*sqrt(d
*x^2 + c)*a*b*d*x - 4*(a*b*c - a^2*d + (b^2*c - a*b*d)*x^2)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) + (3*a
*b*c*d - 2*a^2*d^2 + (3*b^2*c*d - 2*a*b*d^2)*x^2)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sq
rt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)))/(a*b^3*c*d - a^2*b^2*d^2 + (b^4*c*d - a*b^3*d^2)*x^2)]

Sympy [F]

\[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int \frac {x^{4}}{\left (a + b x^{2}\right )^{2} \sqrt {c + d x^{2}}}\, dx \]

[In]

integrate(x**4/(b*x**2+a)**2/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**4/((a + b*x**2)**2*sqrt(c + d*x**2)), x)

Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int { \frac {x^{4}}{{\left (b x^{2} + a\right )}^{2} \sqrt {d x^{2} + c}} \,d x } \]

[In]

integrate(x^4/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/((b*x^2 + a)^2*sqrt(d*x^2 + c)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 284 vs. \(2 (110) = 220\).

Time = 0.34 (sec) , antiderivative size = 284, normalized size of antiderivative = 2.15 \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=-\frac {{\left (3 \, a b c \sqrt {d} - 2 \, a^{2} d^{\frac {3}{2}}\right )} \arctan \left (-\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{2 \, {\left (b^{3} c - a b^{2} d\right )} \sqrt {a b c d - a^{2} d^{2}}} - \frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a b c \sqrt {d} - 2 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a^{2} d^{\frac {3}{2}} - a b c^{2} \sqrt {d}}{{\left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} b - 2 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b c + 4 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a d + b c^{2}\right )} {\left (b^{3} c - a b^{2} d\right )}} - \frac {\log \left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2}\right )}{2 \, b^{2} \sqrt {d}} \]

[In]

integrate(x^4/(b*x^2+a)^2/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-1/2*(3*a*b*c*sqrt(d) - 2*a^2*d^(3/2))*arctan(-1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*
c*d - a^2*d^2))/((b^3*c - a*b^2*d)*sqrt(a*b*c*d - a^2*d^2)) - ((sqrt(d)*x - sqrt(d*x^2 + c))^2*a*b*c*sqrt(d) -
 2*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a^2*d^(3/2) - a*b*c^2*sqrt(d))/(((sqrt(d)*x - sqrt(d*x^2 + c))^4*b - 2*(sqr
t(d)*x - sqrt(d*x^2 + c))^2*b*c + 4*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a*d + b*c^2)*(b^3*c - a*b^2*d)) - 1/2*log(
(sqrt(d)*x - sqrt(d*x^2 + c))^2)/(b^2*sqrt(d))

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^2\right )^2 \sqrt {c+d x^2}} \, dx=\int \frac {x^4}{{\left (b\,x^2+a\right )}^2\,\sqrt {d\,x^2+c}} \,d x \]

[In]

int(x^4/((a + b*x^2)^2*(c + d*x^2)^(1/2)),x)

[Out]

int(x^4/((a + b*x^2)^2*(c + d*x^2)^(1/2)), x)